Übergangsmetallkomplexe mit Schwefelliganden

LIV *. $[Fe(CO)_2('S_4')]$ als Synthon für den gezielten Aufbau mehrkerniger Heterometall-Schwefel-Zentren mit CO-Bindungsstellen. Synthese, Eigenschaften und Röntgenstrukturanalyse von $[Fe(CO)_2(\mu-'S_4')\{M(CO)_5\}_n]$ (n = 1; M = Cr, Mo, W; n = 2; M = W; $'S_4'^{2-} = 2,3,8,9$ -Dibenzo-1,4,7,10-tetrathiadecan(2 -)) **

Dieter Sellmann *, Robert Weiß, Falk Knoch und Matthias Moll

Institut für anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstraße 1, D-8520 Erlangen (B.R.D.)

(Eingegangen den 13. Februar 1990)

Abstract

Diastereoselective Lewis acid base reactions between $[Fe(CO)_2('S_4')]$ (1) and $[M(CO)_5THF]$ (M = Cr, Mo, W) yield bi- and trinuclear heterometallic complexes $[Fe(CO)_2(\mu-'S_4')i\{M(CO)_5\}]$ (M = Cr, 2a; Mo, 2b; W, 2c) and $[Fe(CO)_2(\mu-'S_4')\{W(CO)_5\}_2]$ (3) respectively. 2a also is formed by the reaction of $Li_2[\mu-'S_4'\{Cr(CO)_4\}_2]$ with $FeCl_2 \cdot 4H_2O$. X-Ray structure analyses of 2a and 3 show the $M(CO)_5$ fragments to coordinate the thiolato-S atoms of $[Fe(CO)_2('S_4')]$ in an *exo* manner. The NMR spectra reveal this configuration is preserved in solution.

Zusammenfassung

Diastereoselektive Lewis-Säure-Base Reaktionen zwischen $[Fe(CO)_2('S_4')]$ (1) und $[M(CO)_5THF]$ (M = Cr, Mo, W) ergeben die zwei- und dreikernigen Heterometallkomplexe $[Fe(CO)_2(\mu - 'S_4')\{M(CO)_5\}]$ (M = Cr, 2a; Mo; 2b; W, 2c) und $[Fe(CO)_2(\mu - 'S_4')\{W(CO)_5\}_2]$ (3). 2a bildet sich auch bei der Reaktion von Li₂[μ -'S₄'{Cr(CO)_4}_2] mit FeCl₂ · 4H₂O. Röntgenstrukturanalysen von 2a und 3 zeigen, daß die $[M(CO)_5]$ -Fragmente *exo*-ständig an die Thiolat-S Atome von $[Fe(CO)_2$

⁺ LIII. Mitteilung s. Ref. 1.

^{**} Herrn Professor Dr. Dr. h.c. H. Behrens zum 75. Geburtstag gewidmet.

 $('S_4')$] (1) koordinieren. Aus den NMR-Spektren folgt, daß diese Konfiguration auch in Lösung vorliegt.

Einleitung

Mehrkernige Eisen-Eisen- [2] oder Eisen-Molybdän-Komplexe mit schwefeldominierten Koordinationssphären sind aufgrund zahlreicher Befunde als die aktiven Zentren vieler Oxidoreduktasen, z.B. Nitrogenasen [3], anzunehmen. Als Schwefelliganden der Metalle fungieren dabei wahrscheinlich Sulfidionen sowie Thiolat- und Thioethergruppen der Peptidbausteine Cystein und Methionin. Substratumwandlungen, wie z.B. die Reduktion von N₂ zu NH₃, erfordern die Koordination bzw. Aktivierung von N₂, die Übertragung mehrerer Elektronen und Protonentransfer auf den N₂-Liganden. Die Annahme liegt nahe, daß der Ablauf solch verschiedenartiger Elementarreaktionen durch Mehrmetallzentren und kooperative Reaktivität der einzelnen Metalle erleichtert wird. Aufgrund der fehlenden Symmetrie des umhüllenden Proteins müssen die Metalle der Enzymzentren außerdem chirotop sein [4], selbst wenn sie Bestandteil hochsymmetrischer Cluster sind und Reaktionen achiraler Moleküle katalysieren.

Vielkernigkeit ist ein typisches Merkmal für Metallkomplexe mit Thiolat- und Sulfid-Liganden [5], die Metalle in solchen Komplexen weisen jedoch üblicherweise keinen freien Stellen für die Koordination kleiner Moleküle wie z.B. N_2 oder CO auf. Komplexe, die in dieser Hinsicht strukturelle und gleichzeitig reaktive Modell-funktionen für Nitrogenasezentren erfüllen, also mehrkernig und chiral sind, Schwefelliganden enthalten und N_2 -Aktivierung sowie -Reduktion ermöglichen, sind daher bislang unbekannt.

Auf der Suche nach solchen Modellkomplexen haben wir versucht, $[Fe(CO)_2 ('S_4')]$ als Synthon für den Aufbau mehrkerniger Komplexe einzusetzen. $[Fe(CO)_2 - ('S_4')]$ ist chiral, besitzt am Eisenzentrum CO-Bindungsstellen und weist außerdem in den Thiolatdonatoren lewisbasische Zentren auf, die geeignet sind, die Anlagerung weiterer Metallzentren zu ermöglichen. Dies wurde kürzlich durch die Dimerisierung von $[Fe(CO)('S_4')]$ -Fragmenten zu $[Fe(CO)(\mu - 'S_4')]_2$ bewiesen [6]. Wir haben deshalb jetzt die Reaktion von $[Fe(CO)_2('S_4')]$ mit $[M(CO)_5]$ -Fragmenten (M = Cr, Mo, W) untersucht und dabei zwei- sowie dreikernige Komplexe erhalten, über die wir hier berichten möchten.

Ergebnisse und Diskussion

Stereoisomerie von $[Fe(CO)_2(\mu - S_4') \{M(CO)_5\}_n]$ -Komplexen, (M = Cr, Mo, W; n = 1, 2)

Bei der Anlagerung eines $[M(CO)_5]$ -Fragmentes an die Thiolat-S Atome von $[Fe(CO)_2('S_4')]$, 1, (Fig. 1a) ist theoretisch die Bildung von 2 zueinander diastereomeren Enantiomerenpaaren, also insgesamt 4 Stereoisomeren, zu erwarten. 1 besitzt C_2 -Symmetrie und ist chiral. Im $[Fe('S_4')]$ -Gerüst ist durch die $C_6H_4S_2$ -Einheiten die Konformation der C_2H_4 -Brücke des 'S_4'-Liganden fixiert, d.h. die Thioether-S Atome des 'S_4'-Liganden können nicht invertieren. Dies hat zur Folge, daß die freien Elektronenpaare der sp^3 hybridisierten Thiolatatome räumlich unterschiedlich orientiert und entweder *exo*- oder *endo*-ständig bezüglich des

Fig. 1. (a) $S-[Fe(CO)_2('S_4')]$, S-1; (b) modifizierte Newman-Projektion von S-1, entlang der S-(Thiolat)-Fe-S-(Thiolat)-Achse.

 $[Fe('S_4')]$ -Gerüstes sind. Figur 1b verdeutlicht dies anhand einer modifizierten Newman Projektion des S-Enantiomers von 1 [7*]. Aus Fig. 1 ist auch zu ersehen, daß die *exo*-Elektronenpaare an den beiden Thiolatatomen in dieselbe Richtung zeigen und somit verdeckt (eclipsed), die *endo*-Paare hingegen gestaffelt (staggered) angeordnet sind.

Die bei Koordination eines $(M(CO)_5)$ -Fragments an das R/S-Racemat von 1 somit möglichen 4 Stereoisomere sind in Schema 1 wiedergegeben.

Bei der Koordination von $[M(CO)_5]$ -Fragmenten an beide *trans*-Thiolatatome von 1 unter Bildung von $[Fe(CO)_2(\mu-'S_4')\{M(CO)_5\}_2]$ sind entsprechend drei

Schema 1. Stereoisomere von $[Fe(CO)_2(\mu \cdot S_4) \{M(CO)_5\}]$.

* Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Enantiomerenpaare bzw. sechs Isomere möglich, weil die Anlagerung in exo/exo-, endo/endo-, bzw. exo/endo-Stellung erfolgen kann. Wie aus Fig. 1b bzw. Schema 1 weiterhin zu erkennen ist, sind bei einer endo-Koordination sterische Behinderungen zu erwarten, sodaß sowohl bei Zweikern- wie auch bei Dreikernkomplexen die exobzw. exo/exo-Koordination bevorzugt sein dürfte. Diese Erwartungen wurden röntgenographisch bestätigt.

Synthese und Eigenschaften von $[Fe(CO)_2(\mu - S'_4)(M\{CO)_5\}_n]$ (n = 1, M = Cr, Mo, W; n = 2, M = W)

Die zweikernigen Komplexe wurden gemäss Gl. 1 erhalten:

$$[Fe(CO)_{2}('S_{4}')] + [M(CO)_{5}THF] \xrightarrow{THF/RT}$$

$$[Fe(CO)_{2}(\mu - 'S_{4}')\{M(CO)_{5}\}] + \text{ andere Produkte} \quad (1)$$

$$(2a: M = Cr; 2b: M = Mo; 2c: M = W)$$

Um den Ablauf der Reaktion bzw. die Koordination der $[M(CO)_5]$ -Fragmente an 1 zu erreichen, war es notwendig, das als Donor konkurrierende Lösungsmittel THF vollständig abzukondensieren. Umkristallisation der Rohprodukte aus CH_2Cl_2 lieferte die Zielkomplexe in Form dunkelroter Kristalle. Aus den Mutterlaugen wurden jeweils weitere hellbraune CO-Komplexe isoliert. Sie wurden bisher zwar noch nicht vollständig charakterisiert, besitzen aber wahrscheinlich vierkernige Strukturen.

In einer überraschenden Reaktion wurde 2a auch bei der Umsetzung nach Gl. 2 erhalten.

$$\operatorname{Li}_{2}\left[\mu^{-'}S_{4}^{'}\left\{\operatorname{Cr}(\operatorname{CO})_{4}\right\}_{2}\right] + \operatorname{FeCl}_{2} \cdot 4\operatorname{H}_{2}\operatorname{O}_{\operatorname{Exc.}} \xrightarrow{\operatorname{THF}/\operatorname{RT}/3 \mathrm{d}} 2\mathbf{a} + \operatorname{andere} \operatorname{Produkte}$$
(2)

Mit dieser Umsetzung hatten wir versucht, den zu $[\mu-'S_4'\{M(CO)_3)\}_2]$, (M = Mo, W) [8], analogen Chrom-Komplex zu synthetisieren. Im Gegensatz zu den Mound W-Komplexen konnten wir jedoch keine Oxidation der M⁰-Zentren durch Fe²⁺-Ionen, sondern vielmehr die Übertragung von CO- und 'S₄'-Liganden auf das Fe²⁺-Zentrum and die Bildung von 2a beobachten. 2a wird aber nur in geringer Ausbeute von 13% erhalten; daneben entstehen andere, bislang nicht näher identifizierte CO-Komplexe, die in der Reaktionslösung IR-spektroskopisch beobachtet wurden.

2a-c sind mäßig löslich in CH_2Cl_2 , $CHCl_3$, THF, CH_3CN sowie DMSO und unlöslich in weniger polaren Lösungsmitteln. Sie zersetzen sich langsam in allen Lösungsmitteln. Als Reaktions- bzw. Zersetzungsprodukte konnten $[M(CO)_6]$, $[Fe(CO)_2('S_4')]$ sowie $[Fe(CO)(\mu-'S_4')]_2$ IR- und ¹³C-NMR spektroskopisch nachgewiesen werden. Die durch Dissoziation der Ausgangskomplexe primär entstehenden 1 und $[M(CO)_5$ Solvens], dürften sich anschließend in bekannter Weise zu $[Fe(CO)(\mu-'S_4')]_2$ [6] und $[M(CO)_6]$ zersetzen.

Die erfolgreichen Synthesen von 2a-c veranlaßten uns zu versuchen, durch Änderung der Stöchiometrie gezielt auch drei- und eventuell höherkernige Komplexe zu erhalten. Von Interesse war dabei, ob überhaupt beide Thiolat-S-Atome von 1 zur Koordination an [M(CO),]-Fragmente fähig sind, und welche Konformation die resultierenden Komplexe besitzen. Bei der Umsetzung nach Gl. 3 erhielten wir das dreikernige 3. Bei analogen Umsetzungen mit [Cr(CO)₅THF] bzw. [Mo

$$[Fe(CO)_2('S_4')] + 2[W(CO)_5THF] \xrightarrow{THF/RT} [Fe(CO)_2(\mu - 'S_4') \{W(CO)_5\}_2$$
(3)

+ andere Produkte (3)

 $(CO)_5$ -THF] ließen sich trotz der Stöchiometrie von 1:2 nur die zweikernigen 2a und 2b isolieren und zweifelsfrei charakterisieren. In allen drei Fällen wurden allerdings neben 2a, 2b sowie 3 auch hier hellbraune CO-Komplexe erhalten, die die gleichen Eigenschaften besassen wie die Nebenprodukte, die bei den Umsetzungen nach Gl. 1 angefallen waren. 3 weist ein ähnliches Lösungsverhalten und eine vergleichbare Stabilität in Lösung wie 2a-c auf.

Röntgenstrukturanalyse von 2a und 3

2a und 3 kristallisieren aus CH_2Cl_2 als Solvate aus. Figur 2 zeigt die Molekülstruktur von $2a \cdot CH_2Cl_2$, in Tab. 1 sind ausgewählte Abstände und Winkel aufgeführt. Sowohl das Fe- wie auch das Cr-Atom von 2a sind pseudo-oktaedrisch koordiniert. Das Chromatom hat fünf C-Atome und ein S-Atom als nächste Nachbarn, das Fe-Atom ist von zwei C- und vier S-Atomen umgeben. Wie in den verwandten und strukturell charakterisierten Verbindungen [Fe(CO)₂('S₄')] [6b], [Fe(CO)₂-(^{bu'}S₄')] (^{bu'}S₄'²⁻ = Tetra(tertiärbutyl)-2.3.8.9-Dibenzo-1.4.7.10-tetrathia-decan(2 -)) [9] und [Fe(CO)₂(ttd)] (ttd²⁻ = 1.4.7.10-Tetrathiadecan(2 -)) [10] sind

Fig. 2. Molekülstruktur von [Fe(CO)₂(μ -'S₄'){Cr(CO)₅}]·CH₂Cl₂ (ohne H-Atome und CH₂Cl₂).

Abstände		Winkel		
Cr(1)-Fe(1)	416.9(1)	C(3)-Cr(1)-S(1)	93.6(2)	
Cr(1) - S(1)	246.5(2)	C(4)-Cr(1)-S(1)	94.7(2)	
Fe(1) - C(2)	177.3(7)	C(5)-Cr(1)-S(1)	85.3(2)	
Fe(1) - C(1)	178.5(7)	C(6)-Cr(1)-S(1)	173.9(2)	
Fe(1)-S(4)	229.8(2)	C(7)-Cr(1)-S(1)	90.4(2)	
Fe(1)-S(3)	227.9(2)	S(2) - Fe(1) - S(1)	88.5(1)	
Fe(1) - S(2)	228.4(2)	S(3)-Fe(1)-S(1)	85.8(1)	
Fe(1)-S(1)	231.0(2)	S(3)-Fe(1)-S(2)	90.3(1)	
Cr(1) - C(7)	192.4(7)	S(4) - Fe(1) - S(1)	173.5(1)	
Cr(1) - C(6)	183.3(6)	S(4) - Fe(1) - S(2)	87.1(1)	
Cr(1)-C(5)	190.8(7)	S(4) - Fc(1) - S(3)	89.4(1)	
Cr(1) - C(4)	191.3(7)	C(1) - Fe(1) - S(1)	96.3(2)	
Cr(1) - C(3)	191.7(7)	Fe(1)-S(1)-Cr(1)	121.6(1)	
		C(10)-S(1)-Cr(1)	114.5(2)	
		C(10)-S(1)-Fe(1)	103.6(2)	

Ausgewählte Bindungsabstände (pm) und -winkel (°) von 2a · CH₂Cl₂

auch in 2a die CO-Liganden am Fe-Zentrum cis- und die Thiolat-S Atome (S(1) und S(4)) des 'S₄'-Liganden *trans*-ständig. Die Fe- und Cr-Atome sind über ein Thiolat-S Atom so miteinander verbrückt, daß die oben diskutierte *exo*-Form resultiert. Das gesamte Koordinationspolyeder von 2a kann als zwei über eine gemeinsame Ecke verknüpfte Oktaeder betrachtet werden. Durch die Koordination einer [Cr(CO)₅]-Einheit wird die im [Fe(CO)₂('S₄')]-Molekül ursprünglich vorhandene C_2 -Achse aufgehoben, sodaß 2a nur noch C_1 -Symmetrie besitzt. Die Erniedrigung der Symmetrie hat zur Folge, daß das Fe-Zentrum in 2a prostereogen wird [4].

Wie ein Vergleich der Molekülstrukturen von 1 und 2a zeigt, werden durch die [Cr(CO),]-Koordination die Abstände und Winkel in 1 nur wenig verändert, sodaß z.B. sogar die Fe-S(1)-Bindung mit dem Brückenthiolat-S Atom nur um 1.2(3) pm länger ist als der Fe-S(4) Abstand. Letzterer ist mit 229.8(2) pm praktisch gleich gross wie die korrespondierenden Abstände in 1 (229.0(3) pm). Wie in 1 sind die mittleren Fe-S(Thiolat) Abstände in 2a mit 230.4(2) pm geringfügig größer als die mittleren Fe-S(Thioether) Abstände (228.1(2) pm). Der große Fe-Cr-Abstand von 416.9 (1) pm sowie die 18e-Regel schließen eine direkte Fe-Cr Wechselwirkung aus. Gleiches wie für die Abstände gilt auch für die Winkel, die in 1 und 2a praktisch identisch sind und maximal um 6.1° differieren. Von Interesse ist die Cr-S(1)-(Thiolat)-Bindungslänge, weil Cr⁰-Schwefel-Bindungen bislang nur in wenigen Fällen bestimmt wurden. Mit 246.5(2) pm liegt der Cr-S(Thiolat) Abstand in dem Bereich, der auch für andere Cr⁰-S-Komplexe wie z.B. [Cr(CO)₅(SPMe₃)] (251.0 pm) [11] oder [Cr(CO)₄(EtSC₂H₄SEt)] (241.8 pm) [12] gefunden wurde, für die eine Cr-S Einfachbindung angenommen wird. Er belegt damit, daß in dem von uns kürzlich charakterisierten, fünffach koordinierten und formal 16e⁻-konfigurierten Cr^{0} -Komplex $[Cr(CO)_{3}('S_{2}')]^{2-}$ $('S_{2}' = 1,2$ -Benzoldithiolat(2 -)) [13] der auffallend kurze mittlere Cr-S(Thiolat)-Abstand (229.3 pm) auf eine partielle Cr=S-Doppelbindung zurückzuführen ist.

Wie in 2a bleibt die Gerüststruktur von 1 auch bei der Koordination von zwei $[M(CO)_5]$ -Fragmenten in 3 praktisch unverändert erhalten. Figur 3 zeigt die Ansicht des Moleküls, in Tab. 2 sind ausgewählte Abstände und Winkel aufgeführt.

Tabelle 1

Fig. 3. Molekülstruktur von 3.0.75CH₂Cl₂ (ohne H-Atome und CH₂Cl₂).

Alle drei Metallzentren von 3 sind pseudooktaedrisch koordiniert. Die $[W(CO)_5]$ -Einheiten sind *exo*-ständig an die beiden Thiolatatome gebunden, sodaß 3 wie 1 wieder C_2 -Symmetrie besitzt. Die C_2 -Achse liegt dabei wie in 1 auf der Winkelhalbierenden der Fe(CO)₂-Gruppe und schneidet den Mittelpunkt der C_2H_4 -Brücke. Wie aus Fig. 3 zu erkennen ist, läßt sich 3 in eine polare und eine unpolare Hälfte teilen. Die Oberfläche der einen Hälfte wird ausschließlich von CH-Bindungen des 'S₄'-Liganden, die der anderen von O-Atomen der CO-Liganden gebildet.

Tabelle 2

Bindungsabstände (pm) und -winkel (°) von 3.0.75CH₂Cl₂

Abstände		Winkel	<u> </u>
Fe(1)-W(1)	428.7(1)	S(4)-W(2)-C(42)	98.3(4)
Fe(1)-W(2)	427.8(1)	S(4)-W(2)-C(41)	175.0(4)
Fe(1)-C(1)	178.2(14)	S(1) - W(1) - C(31)	173.9(5)
Fe(1)-C(2)	177.9(12)	Fc(1)-S(4)-W(2)	121.5(1)
Fe(1)-S(1)	230.0(3)	C(10)-S(1)-W(1)	117.4(4)
Fe(1)-S(2)	228.3(4)	Fe(1) - S(1) - W(1)	122.5(1)
Fe(1)-S(3)	227.2(4)	Fe(1)-S(1)-C(10)	104.0(4)
Fe(1)-S(4)	230.5(3)	S(2) - Fe(1) - S(4)	87.4(1)
S(1)-C(10)	175.3(12)	S(1) - Fe(1) - S(4)	173.2(1)
S(1)-W(1)	256.7(3)	S(2) - Fe(1) - S(3)	89.4(1)
S(4)-W(2)	259.6(3)	S(1) - Fe(1) - S(3)	86.2(1)
W(1)-C(31)	196.3(16)	S(1) - Fe(1) - S(2)	88.2(1)
W(1)-C(32)	203.1(14)	C(1) - Fe(1) - S(2)	177.3(5)
W(2)-C(41)	197.2(12)	C(2) - Fe(1) - S(1)	91.4(4)
W(2)-C(42)	200.5(15)	C(1) - Fe(1) - S(1)	93.0(4)

Ein darauf zurückzuführendes ungewöhnliches Lösungsverhalten des Komplexes konnte jedoch bislang nicht beobachtet werden.

Die Bindungsabstände in 3 weisen keine Anomalien auf. Die Fe-S(Thiolat)- und Fe-S(Thioether)-Abstände verhalten sich z.B. wie die entsprechenden Abstände in 1 sowie 2a, betragen zwischen 230.5(3) und 227.2(4) pm und liegen somit in dem für diese Komplexe üblichen Bereich [9]. Im Unterschied zu 2a sind die Fe-S(μ -Thiolat)-Abstände (230.0(3) bzw. 230.5(3) pm) gleich. Die W-S(Thiolat) Abstände von 259.6(3) und 256.7(3) pm weisen auf W-S Einfachbindungen hin. In dem ebenfalls thiolatverbrückten W(CO)₅-Komplex [CpW(CO)₃(μ -SMe)(W(CO)₅)] [14] beträgt der W-S-Abstand 259.6 pm. Die geringfügig unterschiedlichen W-S Bindungsabstände in 3 sind vermutlich auf Kristallpackungseffekte zurückzuführen, da die ¹H-NMR Spektren auf einen symmetrischen Molekülbau schließen lassen. Die Fe-W Abstände (428.7(1) bzw. 427.8(1) pm) und die 18e-Regel schließen auch in 3 direkte Metall-Metall-Bindungen aus.

In den $[W(CO)_5]$ -Einheiten sind die W-C-Abstände *trans* zum Thiolat-S-Atom signifikant kürzer als die *cis* ständigen W-C-Abstände. Dieser Effekt läßt sich auch in den analogen Bindungen in 2a beobachten und tritt allgemein in $[ML(CO)_5]$ -Komplexen auf, wenn L ein besserer σ -Donor- und schlechterer π -Akzeptor als CO ist [15].

Auch die Bindungswinkel von 1, 2a und 3 sind weitgehend ähnlich und weisen keine Besonderheiten auf.

Zusammengefaßt zeigen 2a und 3 also, daß der Lewisbasecharakter der Thiolatatome von 1 ausgeprägt genug ist, um mit Metall-Lewissäuren zu reagieren. Die Koordination der Lewissäure erfolgt dabei aus sterischen Gründen an die *exo*ständigen Elektronenpaare der Thiolatatome. Dies hat zur Folge, daß, wie in Fig. 4 schematisch dargestellt, die drei Metall- und die sie verbrückenden Thiolat-S Atome in einer Ebene liegen.

Spektroskopische Befunde

2a-c lassen sich im Massenspektrometer unzersetzt ionisieren und in den FD-Massenspektren treten die Molekülionen bei m/e = 612 (2a), 658 (2b) bzw. 744 (2c) auf.

Fig. 4. Schematische Struktur von (a) $exo_{(S)}$ -[Fe(CO)₂(μ -'S₄'){Cr(CO)₅}] (2a) und (b) $exo/exo_{(S)}$ -[Fe(CO)₂(μ -'S₄'){W(CO)₅}₂] (3).

Fig. 5. $\nu(CO)$ -Bereich (KBr) von (a) [Fe(CO)₂(μ -'S₄'){Cr(CO)₅}] (2a) und (b) [Fe(CO)₂(μ -'S₄'){W(CO)₅}] (3); x = $\nu(CO)$ der Fe(CO)₂-Gruppe, $\bigcirc = \nu(CO)$ der M(CO)₅-Gruppe.

Die KBr-IR- und Lösungs-IR-Spektren von 2a und 2b sind im Bereich von 4000-400 bzw. 2300-1700 cm⁻¹ praktisch identisch (Fig. 5a, Tab. 3). Die ν (CO)-Banden der Fe(CO)₂-bzw. M(CO)₅-Einheiten lassen sich aufgrund ihrer charakteristischen Muster zuordnen. Der [Cr(CO)₅]-Einheit von z.B. 2a dürften dabei die Banden bei 2066, 1982 und 1916 cm⁻¹ zuzuordnen sein. Sie weisen das typische Muster von [M(CO)₅L]-Komplexen auf, wenn L die lokale $C_{4\nu}$ -Symmetrie des [M(CO)₅] – Fragments erheblich stört. Die beiden praktisch gleichintensiven ν (CO)-Banden der Fe(CO)₂-Gruppe treten bei 2045 und 2008 cm⁻¹ auf, also bei etwas höheren Frequenzen als in 1 (2036, 1992 cm⁻¹). Die Frequenzerhöhung weist auf eine durch die [M(CO)₅]-Koordination geringfügig verringerte Elektronendichte am Fe-Zentrum hin. In 3 wird eine noch etwas stärkere Frequenzerhöhung der ν (CO)-Absorptionen (2069, 2025 cm⁻¹) der [Fe(CO)₂]-Gruppe im Vergleich zu denen von 2 und 1 beobachtet, was sich plausibel auf den größeren elektronenabziehenden Einfluß von zwei W(CO)₅-Einheiten zurückführen läßt.

In Tab. 3 sind ausgewählte spektroskopische Daten der hier beschriebenen Komplexe aufgeführt.

Trotz der unterschiedlichen C_1 - bzw. C_2 -Symmetrie von beispielsweise 2a und 3 sind die ν (CO)-Muster beider Komplexe nahezu gleich (Fig. 5a and 5b).

Dies zeigt, daß die $\nu(CO)$ -Muster von den lokalen Symmetrien der Fe $(CO)_2$ bzw. W $(CO)_5$ -Gruppen dominiert sind bzw. die $\nu(CO)$ -Schwingungen beider Gruppen praktisch nicht koppeln.

Die unterschiedliche Symmetrie von 2a-c gegenüber 3 ist hingegen deutlich in den NMR-Spektren zu beobachten. Die ¹H-NMR-Spektren von 2a-2c sind weitgehend identisch. Die aromatischen Protonen treten jeweils als Multipletts zwischen 7.0 und 7.8 ppm und die Protonen der C₂H₄-Brücke – ebenfalls als Multipletts –

Tabelle 3

Ausgewählte spektroskopische Daten von 2a-c und 3^a

Komplex	ν(CO) (KBr; cm ⁻¹)	¹ H-NMR (ppm; rel. TMS)	FD-MS
$[Fe(CO)_{2}(\mu - 'S_{4}')(Cr(CO)_{5})]$	2066(s)	2.5; 3.4(m, C_2H_4) ^b	$612(M^+)$
(2a)	2045(s)	$7.0-7.8(m, C_6H_4)$	
	2008(s)		
	1982(w)		
	1916(vs)		
$[Fe(CO)_2(\mu - S_A)(Mo(CO)_s)]$	2074(s)	2.5; 3.4(m, C_2H_4) ^c	$658(M^+)$
(2b)	2051(s)	$7.0-7.8(m, C_6H_4)$	
	2009(s)		
	1986(w)		
	1933(vs)		
$[Fe(CO)_{2}(\mu - S_{4})(W(CO)_{5})]$	2073(s)	2.5; 3.4(m, $C_2 H_4$) ^c	$744(M^+)$
(2c)	2051(s)	$7.0-7.8(m, C_6H_4)$	
	2011(s)		
	1975(w)		
	1915(vs)		
$[Fe(CO)_{2}(\mu - S_{4})(W(CO)_{5})_{2}]$	2076(s)	2.55; 3.5(d, C ₂ H ₄) ^c	$1068(M^+)$
(3)	2069(s)	7.31; 7.49(t)	. ,
	2056(sh)	7.65; 7.75(d)	
	2025(s)	5.33(m) CH ₂ Cl ₂	
	1978(w)		
	1915(vs)		

^a d: Dublett; t: Triplett; m: Multiplett; FD: Felddesorption; vs: sehr stark, s: stark, w: schwach, sh: Schulter. ^b In CD₂Cl₂. ^c In CDCl₃.

zwischen 2.5 und 3.4 ppm auf (Tab. 3); sie sind im Vergleich zu 1 nicht verschoben. Die Erniedrigung der Symmetrie von C_2 in 1 nach C_1 in 2 führt jedoch zu einem erheblich komplexeren Aufspaltungsmuster in den Spektren von 2. Aus diesem Grund lassen die ¹H-NMR-Spektren auch keine Aussage darüber zu, ob die für 2a röntgenographisch gesicherte *exo*-Form der Komplexe auch in Lösung beständig ist oder ob Isomerisierung zwischen *exo*- und *endo*-Form eintritt.

Näheren Aufschluß über diese Frage hatten wir uns von der Zahl der in den ${}^{13}C{}^{1}H$ -Spektren auftretenden ${}^{13}C$ -Signale erwartet. Vorausgesetzt, die M(CO)₅-Fragmente können um die M-S-Achse frei rotieren, sind für **2a**-c in Folge der C_1 -Symmetrie für den CO-Bereich 4, für den Aromaten-Bereich 12 und für den Brücken-Bereich 2 Signale zu erwarten. In einem Diastereomerengemisch aus *exo*und *endo*-Isomeren müßte jeweils die doppelte Anzahl von ${}^{13}C$ -Signalen zu beobachten sein. In den ${}^{13}C$ -NMR-Spektren von **2a**-c treten z.B. im Bereich der C_2H_4 -Brücke, jeweils 3 anstatt der erwarteten 2 bzw. 4 ${}^{13}C$ -Signale auf. Eines dieser 3 Signale konnte jedoch aufgrund von Vergleichsspektren eindeutig dem Zersetzungsprodukt von 2, [Fe(CO)₂('S₄')] (1) zugeordnet werden. Die ${}^{13}C$ -NMR-Spektren belegen also, daß **2a**-c auch in Lösung nur in einer isomeren Form vorliegen, und aufgrund der Ergebnisse der Röntgenstrukturanalyse dürfte dies die *exo*-Form sein.

Die gegenüber 2a-c höhere Symmetrie von 3 spiegelt sich deutlich im ¹H-NMR-Spektrum wider. Es zeigt das für $[M('S_4')]$ -Komplexe mit C_2 -Symmetrie typische Aufspaltungsmuster (Fig. 6).

Fig. 6. ¹H-NMR Spektrum von 3.0.75CH₂Cl₂.

Die Protonen der C_2H_4 -Brücke erscheinen als Dublett eines AA'BB'-Systems bei 2.5 und 3.5 ppm und die aromatischen Protonen jeweils als zwei scharfe Dubletts bzw. Tripletts zwischen 7.8 und 7.3 ppm. Zusätzlich läßt sich das Signal bei 5.33 ppm dem Solvat-CH₂Cl₂ zuordnen (siehe Tab. 3).

Die Intensität des CH_2Cl_2 -Signals lieferte auch den exakten Solvatgehalt an CH_2Cl_2 und die Zusammensetzung $3 \cdot 0.75CH_2Cl_2$. Das ¹H-Spektrum belegt weiterhin, daß auch in Lösung ausschliesslich das *exo/exo*-Enantiomerenpaar von 3 vorliegt, da ein Auftreten von *exo/endo* bzw. *endo/endo* Diastereomeren ein komplexeres Aufspaltungsmuster ergeben muß. ¹³C-NMR-Spektren von 3 waren aufgrund der geringen Löslichkeit von 3 nicht in ausreichender Qualität zu erhalten.

Cyclovoltammetrie

Um den Einfluß der Koordination von einer bzw. zwei $M(CO)_5$ -Einheiten an das [Fe('S₄')]-Gerüst auf die Redoxaktivität der ein- und mehrkernigen Komplexe zu erforschen, wurden 1, 2a und 3 cyclovoltammetrisch untersucht. Das Cyclovoltammogramm von 1 zeigt im Bereich von 0 bis 1.6 V keine Redoxpeaks. Im Oxidationsbereich tritt ein Signal bei einem formalen Redoxpotential von $E^{0'} = 0.887$ V (vs. NHE) auf (Fig. 7). Dieses ist aufgrund seines ΔE -Wertes von 0.086 V und dessen Unabhängigkeit von der Vorschubgeschwindigkeit bis zu 0.5 V/s als ein reversibler Einelektronenübergang zu interpretieren, der dem Redoxpaar 1/1⁺ entspricht.

2a bzw. 3 zeigen im Bereich bis -1.6 V ebenfalls keine Redoxaktivität. Im positiven Spannungsbereich tritt jeweils ein Oxidationspeak bei 0.928 V auf. Dieser ist im Vergleich zum entsprechenden Peak von 1 um 0.041 V nach positiverem Potential verschoben. Außerdem zeigen die ΔE -Werte dieser Wellenpaare eine

Fig. 7. Cyclovoltammogramm von 1 (in CH₂Cl₂ vs. NHE).

deutliche Abhängigkeit von der Vorschubgeschwindigkeit, was auf einen quasireversiblen Elektrodenprozeß hinweist.

Die cyclovoltammetrischen Ergebnisse zeigen, daß 1, 2a sowie 3 reversibel bzw. quasireversibel zu den jeweiligen Kationen 1⁺, 2a⁺ bzw. 3⁺ oxidiert werden können. Die Ähnlichkeit der Oxidationspotentiale weist dabei darauf hin, daß die Redox-Elektronen bevorzugt auf dem [Fe(CO)₂('S₄')]-Gerüst lokalisiert sind. Die geringfügig höheren Oxidationspotentiale von 2a bzw. 3 gegenüber dem von 1 zeigen außerdem, daß bei Koordination von $M(CO)_5$ -Einheiten die Oxidation erschwert wird. Dies läßt sich auf eine verringerte Elektronendichte im [Fe(CO)₂S₄]-Teil zurückführen, die bereits aus den IR-spektroskopischen Befunden zu folgern war.

Resümee

Die Ergebnisse zeigen, daß die Thiolatatome von 1 ausreichende Lewisbasizität aufweisen, um Metallkomplexfragmente zu koordinieren. 1 läßt sich daher als Synthon einsetzen, um mit $[M(CO)_5]$ -Fragmenten gezielt zwei-, drei- (und wahrscheinlich sogar höherkernige) Heterometallkomplexe mit Schwefelkoordinationssphären aufzubauen. Dabei entstehen 2a-c sowie 3 diastereoselektiv als exo- bzw. exo/exo-Isomere, die auch in Lösung konfigurationsstabil sind.

Die Koordination von $[M(CO)_5]$ beeinflußt die Abstände und Winkel in $[Fe(CO)_2('S_4')]$ nur sehr geringfügig. Aus der Verschiebung der $\nu(CO)$ -Frequenzen der $Fe(CO)_2$ -Gruppe folgt jedoch eine geringe Elektronendichteerniedrigung im $[Fe(CO)_2('S_4')]$ -Gerüst, die sich auch in den Oxidationspotentialen von 2a bzw. 3 widerspiegelt. 2a-c sowie 3 sind chiral und besitzen sowohl am Eisen- wie den Heterometallzentren Bindungsstellen für σ - π -Liganden wie CO.

Koordination durch Schwefeldonatoren, Chirotopizität und Reaktivität der Metallzentren erfüllen somit wichtige Forderungen, die von Modellkomplexen für die aktiven Zentren von Metallenzymen wie Nitrogenase erfüllt werden müssen.

Experimenteller Teil

Allgemeines

Alle Reaktionen wurden unter Stickstoff in absolutierten Lösungsmitteln in Schlenkgefäßen durchgeführt und soweit möglich IR-spektroskopisch verfolgt. Lösungsspektren wurden in CaF₂-Küvetten unter Kompensation der Lösungsmittelabsorptionen und Festsubstanzen als KBr-Presslinge vermessen. Die Spektren wurden auf folgenden Geräten aufgenommen: IR: Zeiss IMR 25 und Perkin Elmer 983; NMR: JEOL FT-NMR-Spektrometer JNM-GX 270; Massenspektren: Varian MAT 212 Massenspektrometer. UV-Bestrahlungsreaktionen wurden mit einem 25 W Hg-Hochdruckbrenner der Fa. Original Quarzlampen GmbH, Hanau durchgeführt. [Fe(CO)₂('S₄')] [10], [M(CO)₅THF] (M = Cr, Mo, W) [16], [Cr(CO)₄nor] [17] und 'S₄'-H₂ [18] wurden nach loc. cit. dargestellt.

Röntgenstrukturanalyse von $[Fe(CO)_2(\mu - S_4') \{Cr(CO)_5\}] \cdot CH_2Cl_2 (2a \cdot CH_2Cl_2)$ und $[Fe(CO)_2(\mu - S_4') \{W(CO)_5\}_2] \cdot 0.75CH_2Cl_2 (3 \cdot 0.75CH_2Cl_2)$

Einkristalle von $2a \cdot CH_2Cl_2$ wurden aus einer gesättigten CH_2Cl_2/n -Hexan (1/1)-Lösung und von $3 \cdot 0.75CH_2Cl_2$ aus einer gesättigten CH_2Cl_2 -Lösung beim

Tabelle 4

Verbindung	$2a \cdot CH_2Cl_2$	3.0.75CH2Cl2
Formel	C ₂₂ H ₁₄ Cl ₂ CrFeO ₇ S ₄	$C_{26}H_{12}FeO_{12}S_4W_2$
Molmasse	697.36	1153.11
Kristall Größe (mm ³)	0.50×0.30×0.15	0.40×0.20×0.20
Raumgruppe	$P2_1/n$	$P2_1/c$
Kristallsystem	monoklin	monoklin
a (pm)	1131.2 (12)	1285.0 (7)
<i>b</i> (pm)	1046.9 (19)	1682.9 (8)
c (pm)	2350.3 (14)	1656.4 (7)
β [•] (°)	103.64 (5)	97.19 (4)
$V(\text{pm}^3)$	2705(4)×10 ⁶	3553(3)×10 ⁶
Z	4	4
$\rho_{\rm ber}$ (g/cm ³)	1.71	2.15
μ (cm ⁻¹)	14.2	74.4
Meßgerät	Nicolet R3m/V	Nicolet R3m/V
Strahlung (pm)	Mo- K_{α} , 71.073	Mo- K_{α} , 71.073
Meßtemperatur (K)	153	293
Meßbereich (°)	$3 < 2\theta < 54$	$3 < 2\theta < 54$
Meßmodus	ω-scan	ω-scan
gemessene Reflexe	7035	8304
unabhängige Reflexe	5820	7377
beobachtete Reflexe	3961	5706
Sigma-Kriterium	$F > 6\sigma(F)$	$F > 4\sigma(F)$
Strukturlösung	Direkte Methoden	Direkte Methoden
Rechenprogramm	SHELXTL PLUS	SHELXTL PLUS
R; R.,	6.6; 5.0	6.3; 5.2

Kristallographische Daten und Angaben zu den Strukturbestimmungen von $2a \cdot CH_2Cl_2$ und $3 \cdot 0.75CH_3Cl_2$

Abkühlen von +20 auf -30 °C erhalten und dann in Glaskapillaren eingeschmolzen. Die Strukturlösungen erfolgten mit direkten Methoden (SHELXTL-PLUS) mit anisotroper Verfeinerung der Nichtwasserstoffatome. Die Lagen der aromatischen Wasserstoffatome wurden für ideale Geometrie berechnet und bei der Verfeinerung festgehalten. Die Wasserstoffatome der Methylengruppen wurden für ideale Tetraeder berechnet und während der Verfeinerung um ihr Zentral-C-Atom gedreht, unter Annahme eines gemeinsamen Temperaturfaktors für isotrope Wasserstoffatome. Weitere Angaben zur Strukturbestimmung sowie die Atomkoordinaten sind in den Tabellen 4, 5 und 6 aufgeführt [19*].

Synthesen

 $[Fe(CO)_2(\mu \cdot S_4')\{M(CO)_5\}]$ (M = Cr: 2a; M = Mo: 2b; M = W: 2c) aus $[Fe(CO)_2(S_4')]$ und $[M(CO)_5THF]$

1.5 mmol (630 mg) festes 1 werden unter Rühren mit einer jeweils frisch bereiteten Lösung von 1.5 mmol [M(CO)₅THF] (M = Cr, Mo, W) in 100 ml THF versetzt. Anschließend werden alle flüchtigen Bestandteile abkondensiert, der rotorange Rückstand wird bei ca. 50°C 2 h getrocknet und anschließend mit ca. 15 ml CH₂Cl₂ extrahiert. Aus der CH₂Cl₂-Lösung fallen nach Filtration und Abkühlen des Filtrats auf -30°C rotbraune Kristalle von [Fe(CO)₂(μ -'S₄'){M(CO)₅}] (M = Tabelle 5

Atomkoordinaten (×10⁴) und isotrope Thermalparameter ($pm^2 \times 10^{-1}$) der Nichtwasserstoffatome von [Fe(CO)₂(μ -'S₄'){Cr(CO)₅}]·CH₂Cl₂

<u>_</u>	<i>x</i>	у У	Z	U _{eq} a
Cr(1)	4293(1)	2323(1)	4340(1)	18(1)
Fe(1)	4885(1)	3471(1)	2732(1)	18(1)
S(1)	3770(1)	2317(2)	3261(1)	18(1)
S(2)	3118(2)	3882(2)	2055(1)	21(1)
S(3)	5089(2)	1587(2)	2278(1)	22(1)
S(4)	5876(2)	4495(2)	2114(1)	30(1)
C(1)	6336(6)	3196(6)	3215(3)	26(2)
O(1)	7291(4)	3037(5)	3512(2)	43(2)
C(2)	4656(6)	4902(6)	3095(3)	23(2)
O(2)	4474(5)	5793(4)	3336(2)	36(2)
C(3)	2977(6)	3438(6)	4390(3)	25(2)
O(3)	2222(4)	4135(5)	4423(2)	43(2)
C(4)	5293(6)	3815(6)	4408(3)	24 (2)
O(4)	5896(4)	4692(5)	4503(2)	40(2)
C(5)	5612(6)	1240(6)	4274(3)	25(2)
O(5)	6405(4)	584(5)	4251(2)	42(2)
C(6)	4795(5)	2187(6)	5139(3)	23(2)
O(6)	5125(4)	2096(5)	5643(2)	37(2)
C(7)	3297(6)	835(6)	4347(3)	24(2)
O(7)	2740(4)	- 44(5)	4388(2)	35(2)
C(15)	1944(5)	3382(6)	2400(3)	18(2)
C(14)	747(6)	3681(6)	2121(3)	23(2)
C(13)	- 181(6)	3320(6)	2382(3)	27(2)
C(12)	89(6)	2668(6)	2908(3)	25(2)
C(11)	1293(5)	2378(6)	3183(3)	24(2)
C(10)	2245(5)	2748(6)	2937(3)	19(2)
C(25)	5937(6)	1975(6)	1751(3)	24(2)
C(24)	6259(6)	99 7(7)	1418(3)	36(3)
C(23)	6914(7)	1286(9)	1006(3)	49(3)
C(22)	7243(6)	2560(9)	948(3)	49(3)
C(21)	6934(6)	3537(8)	1278(3)	39(3)
C(20)	6269(6)	3254(7)	1693(3)	27(2)
C(16)	3080(6)	2630(6)	1520(2)	26(2)
C(26)	3562(6)	2367(6)	1808(3)	26(2)
C(8)	5733(8)	6686(9)	- 20(3)	67(4)
Cl(1)	5081(2)	6521(3)	571(1)	84(1)
Cl(2)	6440(3)	8175(3)	-43(1)	83(1)

^a Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Cr, Mo, W) aus, die durch Dekantieren abgetrennt, mit wenig kaltem CH_2Cl_2 gewaschen und im HV getrocknet werden. Der Rückstand der Filtration enthält neben wenig [Fe(CO)₂(μ -'S₄'){M(CO)₅}] jeweils noch hellbraune Kristalle von CO-Komplexen, die bislang nicht zweifelsfrei charakterisiert werden konnten.

Ausbeute: 2a: 800 mg (55%). Elementaranalyse für $[Fe(CO)_2(\mu - S_4') \{Cr(CO)_5\}] \cdot CH_2Cl_2$: Gef.: C, 38.18; H, 1.83; S, 19.54. $C_{22}H_{14}Cl_2CrFeO_7S_4$ (697.36) ber.: C, 37.89; H, 2.02; S, 18.39%.

Ausbeute: **2b**: 250 mg (25%). Elementaranalyse für $[Fe(CO)_2(\mu - S_4')\{Mo(CO)_5\}]$: Gef.: C, 38.82; H, 1.71; S, 19.97. C₂₁H₁₂FeMoO₇S₄ (656.37) ber.: C, 38.43; H, 1.84; S, 19.54%.

Tabelle 6

Atomkoordinaten (×10⁴) und äquivalente isotrope Thermalparameter ($pm^2 \times 10^{-1}$) der Nichtwasserstoffatome von [Fe(CO)₂(μ -'S₄'){W(CO)₅}₂]·0.75CH₂Cl₂

Fe(1)4921(1)985(1)7681(1)30C(1)4506(9)0(8)7408(9)48O(1)4237(9) $-618(6)$ 7258(7)77C(2)5119(9)1216(8)6663(7)44	(1) ((4) ((4) ((4) ((5)
C(1) 4506(9) 0(8) 7408(9) 48 O(1) 4237(9) -618(6) 7258(7) 77 C(2) 5119(9) 1216(8) 6663(7) 44	(4) (4) (4) (5)
O(1) 4237(9) -618(6) 7258(7) 77 C(2) 5119(9) 1216(8) 6663(7) 44	/(4) /(4) /(5)
C(2) 5119(9) 1216(8) 6663(7) 44	(4) (5)
	(5)
O(2) 5272(9) 1369(8) 6013(6) 87	
S(1) 6647(2) 613(2) 7993(2) 34	(1)
S(2) 5405(2) 2245(2) 8078(2) 47	(1)
S(3) 4742(2) 682(2) 8993(2) 47	(1)
S(4) 3211(2) 1428(2) 7518(2) 32	(1)
C(15) 6791(9) 2193(7) 8266(8) 45	i(4)
C(14) 7319(11) 2922(8) 8509(9) 58	kisi
C(13) 8425(11) 2902(10) 8582(10) 68	เ ด้
C(12) 8942(11) 2231(11) 8418(10) 68	k(6)
C(11) 8427(9) 1564(9) 8204(8) 50	(4)
C(10) 7324(8) 1516(7) 8138(7) 40	(4)
C(25) 3403(9) 807(8) 9076(7) 46	(4)
C(24) 3031(12) 573(14) 9789(9) 89	(7)
C(23) 1979(12) 659(12) 9873(9) 80	(¹)
C(22) 1302(11) 949(10) 9214(8) 61	(5)
C(21) 1677(9) 1175(9) 8517(7) 47	(4)
C(20) 2700(9) 1093(7) 8418(6) 39	(4)
C(16) 5036(12) 2278(12) 9101(10) 75	6
C(26) 5299(11) 1517(12) 9539(8) 71	(6)
W(1) 7488(1) -486(1) 7216(1) 38	ά)
C(31) 8135(11) -1395(10) 6729(9) 58	s(5)
O(31) 8506(10) -1926(7) 6432(7) 82	2(4)
C(32) 6289(12) - 566(9) 6297(9) 57	(5)
O(32) 5649(10) -687(9) 5777(7) 91	Ġ
C(33) 8773(11) - 519(8) 8059(9) 52	(5)
O(33) 9516(7) - 564(8) 8515(6) 74	(4)
C(34) 6702(11) -1221(8) 7903(8) 48	(4)
O(34) 6262(9) -1615(7) 8290(6) 72	(4)
C(35) 8212(13) 328(10) 6536(9) 62	(5)
O(35) 8613(11) 750(9) 6158(8) 100	(5)
W(2) 1940(1) 1109(1) 6214(1) 34	ά)
C(41) 895(10) 942(9) 5251(8) 53	Ś
O(41) 277(8) 854(7) 4696(6) 71	(4)
C(42) 2765(10) 229(9) 5780(8) 49	(4)
O(42) 3172(10) -292(8) 5483(7) 80	(4)
C(43) 1020(110 1961(10) 6554(8) 58	(5)
O(43) 445(1) 2480(9) 6677(8) 107	6
C(44) 1174(10) 254(9) 6776(7) 45	(4)
O(44) 759(9) -242(7) 7077(6) 75	(4)
C(45) 2742(10) 1880(9) 5592(8) 54	(5)
O(45) 3153(10) 2319(8) 5200(7) 92	(5)
Cl(1) 1620(8) 6650(6) 4693(6) 111	(5)
Cl(2) 3127(8) 6529(6) 3555(6) 113	(6)
C(3) 1788(25) 6561(18) 3685(18) 79	(9)

^a Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

342

Ausbeute: 2c: 300 mg (30%). Elementaranalyse für $[Fe(CO)_2(\mu - 'S_4') \{W(CO)_5\}]$: Gef.: C, 33.57; H, 1.54; S, 15.54. $C_{21}H_{12}FeO_7S_4W$ (744.28) ber.: C, 33.89; H, 1.63; S, 17.23%.

2a aus $Li_2[\mu - S_4' \{Cr(CO)_4\}_2]$ und $FeCl_2 \cdot 4H_2O$

188 mg (0.6 mmol) $S_4'-H_2$ werden in 20 ml THF bei -60° C mit 1.2 mmol n-Butyllithium (0.75 ml einer 1.6 *M* n-Butyllithium Lösung in n-Hexan) versetzt und nach Erwärmen auf 20°C unter Rühren in eine zitronengelbe Lösung von 310 mg (1.2 mmol) [Cr(CO)₄nor] in 30 ml THF getropft. Nach 3h wird die Reaktionslösung zur Trockene abgezogen, der hochviskose gelbe Rückstand wird mit 30 ml n-Hexan digeriert und anschließend getrocknet. Der nun gelbgrüne Rückstand wird in 70 ml THF aufgenommen, mit 3 g FeCl₂ · 4H₂O versetzt und 3 d gerührt, wobei sich die Farbe der Reaktionslösung zur Trockene gebracht und der orangebraune Rückstand in 10 ml CH₂Cl₂ aufgenommen. Aus der filtrierten rotbraunen CH₂Cl₂-Phase fallen beim Kühlen auf -30° C innerhalb von 3 d rote Kristalle aus, die abgetrennt und erneut aus 5 ml CH₂Cl₂ bei 20/ -30° C umkristallisiert werden.

Ausbeute: **2a**: 50 mg (13%). Elementaranalyse für $[Fe(CO)_2(\mu - 'S_4') \{Cr(CO)_5\}]$: Gef.: C, 41.22; H, 1.94; S, 21.64. $C_{21}H_{12}CrFeO_7S_4$ (612.42) ber.: C, 41.19; H, 1.97; S, 20.94%.

$[Fe(CO)_{2}(\mu - S_{4}) \{ W(CO)_{5} \}_{2}] \cdot 0.75CH_{2}Cl_{2} \ (\mathbf{3} \cdot 0.75CH_{2}Cl_{2})$

Die gelborange Lösung von 2.2 mmol [W(CO)₅THF] in 100 ml THF wird mit 460 mg (1.1 mmol) festem [Fe(CO)₂('S₄')] (1) versetzt, wobei eine violettrote Lösung entsteht. Nach 10 min Rühren bei 20 °C werden alle flüchtigen Bestandteile im Vakuum abkondensiert, der Rückstand wird in 40 ml CH₂Cl₂ aufgenommen, die CH₂Cl₂-Lösung wird filtriert und auf -30 °C gekühlt. Innerhalb von 2 d fallen schwarzrote Prismen von [Fe(CO)₂(μ -'S₄'){W(CO)₅}₂] · 0.75CH₂Cl₂ aus, die abgetrennt, mit wenig CH₂Cl₂ gewaschen und 6h in HV getrocknet werden.

Ausbeute: $3 \cdot 0.75 CH_2 Cl_2$: 600 mg (47%). Elementaranalyse für $[Fe(CO)_2(\mu - S_4') \{W(CO)_5\}_2] \cdot 0.75 CH_2 Cl_2$: Gef.: C, 28.07; H, 0.96; S, 11.46. $C_{26}H_{12}FeO_{12}S_4W_2 \cdot (0.75 CH_2 Cl_2)$ ber.: C, 28.39; H, 1.20; S, 11.33%.

Dank

Diese Untersuchung wurde von der Deutschen Forschungsgemeinschaft sowie dem Fonds der chemischen Industrie unterstützt, wofür wir herzlich danken.

Literatur

- 1 LIII. Mitteilung: D. Sellmann, R. Weiß und F. Knoch, Inorg. Chim. Acta, im Druck.
- 2 (a) T.G. Spiro (Ed.), Iron Sulfur Proteins, Metal Ions in Biology, Vol. 4, John Wiley and Sons, New York, 1982; (b) J.R. Chisnell, R. Remakumar und P.E. Bishop, J. Bacteriol., 170 (1988) 27; (c) E.I. Stiefel, Progr. Inorg. Chem., 22 (1977) 1; (d) T.G. Spiro (Ed.), Molybdenum Enzyms, Metal Ions in Biology, Vol. 7, John Wiley and Sons, New York, 1985.
- 3 F.J. Bergersen and J.R. Postgate (Eds.), A Century of Nitrogen Fixation Research: Present Status and Future Prospects, The Royal Society, London, 1987.
- 4 K. Mislow and J. Siegel, J. Am. Chem. Soc., 106 (1984) 3319.

- 5 (a) I.G. Dance, Polyhedron, 5 (1986) 1037; (b) E.W. Abel und B.C. Crosse, Organomet. Chem. Rev., 2 (1967) 443.
- 6 (a) D. Sellmann, R. Weiß, F. Knoch, Angew. Chem., 101 (1989) 1719; Angew. Chem. Intern. Ed. Engl., 28 (1989) 1703; (b) D. Sellmann, R. Weiss, F. Knoch, J. Dengler und G. Ritter, Inorg. Chem., im Druck.
- 7 Diese Terminologie wurde hier der Einfachheit halber benutzt, obwohl sie die Beschreibung oktaedrischer Komplexe mit vielzähnigen Liganden nur unzureichend erlaubt. Gleiches gilt für die IUPAC-Nomenklatur, nach der die R-bzw. S- als Δ- bzw. A-Isomere zu bezeichnen sind. Vgl. dazu: R.S. Cahn, C.K. Ingold, V. Prelog, Angew. Chem., 78 (1966) 413; Angew. Chem. Int. Ed. Engl., 5 (1966) 385; sowie: Deutscher Zentralausschuß für Chemie (Ed.): Intern. Regeln für die chemische Nomenklatur und Terminologie, Bd. 1, Gruppe 1, Verlag Chemie, Weinheim, 1976, S. 100.
- 8 (a) D. Sellmann, G. Binker und R. Boese, J. Organomet. Chem., 311 (1986) C11; (b) D. Sellmann, G. Binker, J. Schwarz, F. Knoch, R. Boese, G. Huttner und L. Zsolnai, ibid., 323 (1987) 323; (c) D. Sellmann und R. Weiss, unveröffentlichte Ergebnisse.
- 9 D. Sellmann, G. Freyberger, R. Eberlein, G. Huttner und L. Zsolnai, J. Organomet. Chem., 323 (1987) 21.
- 10 D. Sellmann, H.E. Jonk, H.R. Pfeil, G. Huttner und J. v. Seyerl, J. Organomet. Chem., 191 (1980) 171.
- 11 E.N. Baker und B.R. Reay, J. Chem. Soc., Dalton Trans., (1973) 2205.
- 12 E.N. Baker und N.G. Larsen, J. Chem. Soc., Dalton Trans., (1976) 1769.
- 13 D. Sellmann, W. Ludwig, G. Huttner und L. Zsolnai, J. Organomet. Chem., 294 (1985) 199.
- 14 J.E. Guerchais, J.L. LeQuere, F.Y. Petillon, L. Manojlovic-Muir, K.W. Muir und D.W.A. Sharp, J. Chem. Soc., Dalton Trans., (1982) 283.
- 15 L.J. Todd und J.R. Wilkinson, J. Organomet. Chem., 77 (1974) 1.
- 16 W. Strohmeier, Angew. Chem., 76 (1964) 873; Angew. Chem. Int. Ed. Engl., 3 (1964) 730.
- 17 M.A. Bennet, L. Pratt und G. Wilkinson, J. Am. Chem. Soc., (1961) 2037.
- 18 D. Sellmann und W. Reisser, J. Organomet. Chem., 294 (1985) 333.
- 19 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD320088/320018, der Autorennamen und des Zeitschriftenzitats angefordert werden.